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FOREWORD 

This  r e p o r t  p re sen t s  r e s u l t s  of the  expansion and improvement of the 
FORMA system f o r  response and load a n a l y s i s .  
f o r  FORTRAN Matr ix  Analysis .  The s tudy,  performed from 16 May 1975 
through 1 7  May 1976 was conducted by the Ana ly t i ca l  Mechanics Department, 
Yar t in  Marietta Corporat ion,  Denver Divis ion,  under the c o n t r a c t  NAS8- 
31376. 
Space Adminis t ra t ion,  George C. Marshall  Space F l i g h t  C e n t e r ,  Huntsv i l le ,  
Alabama under the d i r e c t i o n  of Dr. John R. Admire, S t r u c t u r a l  Dynamics 
Divis ion,  Sys terns Dynamics Laboratory.  

The acronym FORMA s t ands  

The program was adminis tered by the  Nat iona l  Aeronaut ics  and 

This  r e p o r t  is publ ished i n  seven volumes: 

Volume I - Programming Manual, 
Volume I I A  - L i s t i n g s ,  Dense FORMA Subrout ines ,  
Volume I I B  - L i s t i n g s ,  Sparse FORMA Subrout ines ,  
Volume I I C  - L i s t i n g s ,  F i n i t e  Element FORMA Subrout ines ,  
Volume I I I A  - Explanat ions,  Dense FORMA Subrout ines ,  
Volume I I I B  - Explanat ions,  Sparse FORMA Subrout ines ,  and 
Volume I I I C  - Explanat ions,  F i n i t e  Element FORMA Subrout ines .  
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i v  

ABSTRACT 

This  report p re sen t s  techniques f o r  t he  s o l u t i o n  of s t r u c t u r a l  
dynamic systems on a n  e l e c t r o n i c  d i g i t a l  computer u s ing  FORMA (FORTRAN 
- Matrix Analys is ) .  

FORMA is  a 1ib:ary of subrout ines  coded i n  FORTRAN I V  f o r  the e f f i -  
c i e n t  s o l u t i o n  of s t r u c t u r a l  dynamics problems. 
i n  the form of bu i ld ing  blocks t h a t  can be put  t oge the r  t o  so lve  a l a r g e  
v a r i e t y  of s t r u c t u r a l  dynamics problems. 
bu i ld ing  block approach is t h a t  programming and checkout t i m e  a r e  l i m i -  
t ed  t o  t h a t  r equ i r ed  f o r  p u t t i n g  the blocks toge ther  i n  the  proper  order .  

These subrout ines  a r e  

The obvious advantage of t he  

The FORMA method has  advantageous f e a t u r e s  such a s :  

1. subrout ines  i n  the  l i b r a r y  have been used ex tens ive ly  f o r  many 
yea r s  and a s  a r e s u l t  are w e l l  checked o u t  and debugged; 

2 .  method w i l l  work on any computer with a FORTRAN IV compiler ;  

3. i nco rpora t ion  of  new subrout ines  i s  no problem; 

4 .  bas i c  FORTRAN s ta tements  may be used t o  g ive  el-treme f lex i -  
b i l i t y  i n  w r i t i n g  a program. 

Two programming techniques a r e  used i n  FORMA: dense and s p a r s e .  
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LIST OF SYMBOLS 

[ ] matrix 

vector 
{ 1 column matrix 

{ row matrix 

T transpose (when symbol is  a superscript) 

m designates the row size of matrix 
n designates the column size of matrix 

a designates an element of matrix [A]  

i designates the i& row of matrix [A] 
j designates the jfi column of matrix [A]  

C l s n  

aij 
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I .  INTRODUCTION 

This volume presents a c  explanation of the function of each sparse 
subroutine in the FORMA l ibrary.  
cases  to c l a r i f y  the operations performed by a subroutine. 

Example problems are given in some 
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11. SUBROUTINE EXPLANATIONS 

The subroutines are given in alphabetical order with numbers 
coming before letters, 



Subroutine YAA c a l c u l a t e 8  the m u l t i p l l c a t i o n  of a matr ix ,  i n  FORMA 
oparee no ta t lon ,  by B s c a l a r .  In matr ix  no ta t ion ,  

where 

NR is the number of rows of each mat r ix ,  and 
&?C is the  number of columns of each matrix. 

-- EXAMPLE 

Consider Input  of Or = 2; and 

The reade r  can e a s i l y  v e r i f y  the  output  t o  be 

DESC€UPTWN OF TECHNIQUE 

[ A ]  and [Z] a r e  s t o r e d  on u t  l i t y  tapes  NUTA ani 
matrices i n  FORMA sparse  no ta t ion .  

NUTZ a s  row part t ioned 

Matrix [ A ]  i s  read from NUTA and each non-zero element is mul t ip l i ed  by Q .  

Each p a r t i t i o n  of [ A ]  then becomes a p a r t i t i o n  of [Z] and is stored on 
mz . 



Subrout ine YAABB calculates t h e  summation of two m a t r i c e s ,  each 
matrix m u l t i p l i e d  by a scalar. 
n o t a t i o n .  I n  matr ix  n o t a t i o n ,  

Both m a t r i c e s  are i n  FORMA s p a r s e  

where 

i = 1, NR 
j = 1, NC 

NR is t h e  number of rows of each matrix, and 

NC is t h e  number of columns of each matrix.  

The number of tows of [ A ]  and [B] m u s t  b e  e d u a l ,  and t h e  number 
of columns of [ A ]  and [B] must b e  equal .  

DESCRIPTION OF TECHNIQUE 

[ A ] ,  [E], and [Z] are s t o r e d  on u t i l i t y  t a p e s  NUTA, NUTB, and NUT2 
a8 row p a r t i t i m e d  matrices i n  qa r se  n o t a t i o n .  

P a r t i t i o n s  of t h e  matrices are opera ted  on i n  core in t h e  V and 
LV work spaces  a s  fol lows:  (11, m, n refer t o  p a r t i t i o n  number) 

v LV 

[A] (e )  11 = 1, NPARTA 

[B] (m) m - 1, NPARTB €I# [Z] (n) n = 1, NPARTZ 

The l o c a t i o n s  of elements i n  [ A ]  and [B] a r e  compared with each 
o t h e r .  I f  t h e  l o c a t i o n s  are  e q u a l ,  elements a and b a r e  s u m e d  
and s t o r e d  in [Z]. I f  t h e  l o c a t i o n s  a r e  n o t  equal ,  the  lesser 
l o c a t i o n  element i s  s t o r e d  i n  [ Z ] .  



YASSpl  - 1 / 2  

Subroutine YASSEM places  (assembles) a matrix [A] i n t o  a se<.ond ma t r ix  [Z] 

replace corresponding elements i n  the o r i g i n a l  [Z] . 
of t h i s  subrout ine  in forming [Z] , i t  is important  t h a t  [Z] is c o r r e c t l y  
def ined .  
should be used. 
the assembly of s e v e r a l  
row, column l i m i t s  of [Z f . In s u b s c r i p t  n o t a t i o n ,  

s t a r t i n g  a t  d deRignated IOW, column l o c a t i o n  (IRZ, JCZ,  
[Z]. Both ma t r i ces  a r e  in F O R M  s p a r s e  n o t a t i o n .  The 

Before the f i r s t  use  

For example, i f  [ZJ is t o  be o r i g i n a l l y  n u l l ,  sub rou t ine  YZERO 

The [A] mat r ix  must be wi th in  the  
This subrou t ine  may be c a l l e d  repea ted ly  t u  form [Z] from 

A] m t r i c e s .  

= 1, NRA 
'ij for (1 = 1, NCA) 

where 

i = k + IRZ -1; 
j E 1 + JCZ -1; 
NRA is the  number of rows in [A],; and 
NCA is t h e  number of colunms i n  LA) . 

Consider a ma t r ix  def ined  a s  

h c 4  = [": 0. ;: 0. :: 0 .  "1. 0 .  

Matrix [A],,, e [:: ;l 8511 is to be assembled 

i n t o  [Z) s t a r t i n g  a t  the  2 ,  1 l o c a t i o n  (IRZ = 2 ,  JCZ = 1) of [ Z ]  . 
result of t h i s  ope ra t ion  w i l l  be 

DESCRIPTION OF TECHNIQUE 

[A] and (Z] a r e  s t o r e d  on u t i l i t y  t a p e s  NUTA and NUTZ as row p a r t i t i o n e d  
matrices i n  FORMA sparse n o t a t i o n .  

- 



Matrix [A] is read from M P I A  one p a r t i L o n  a t  a t i m e .  The l o c a t i o n  
numbers of i t s  non-zero e l e n e n t s  a r e  rev ised  by adding the 
[ l O O O O o * ( I R Z - 1 )  + ( J C Z - l ) ]  t o  them and the rev ised  matr; :i [ ; 8 r a ~ : s ' i ~ ~ o r e d  
on NUTl. 

I n  the  next o p e r a t i o n ,  matrLx [Z] i s  read from NUT2 one p a r t i t i o n  a t  a 

[ip";s t o  be i n s e r t e d ,  a r e  e l imina ted  and tz] i s  s t o r e d  on NUTZ. 
Any non-zero elements e x i s t i n g  i n  t e a r e a  of the matrix h e r e  

Matri:; [a is  read from NUT2 an  i t t e n  on NUTZ. Matrix [x] is then 
read from NUTl and s t o r e d  with 

The f i n a l  s t e p  i s  a-complished by c a l l i n g  subrout ine  YLORD t o  c o r r e c t l y  
order the remaining non-zero elements of [Z] toge ther  with the rev ised  
elements of [A] , and t h e  r e s u l t i n g  mat r ix  i s  s t o r e d  on NUTZ. 
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Subroutine YBSL3A s o l v e s  the l inear  simultaneous algebraic  equa- 
t ions [A] [ Z ]  = ( B ] ,  where [ A ]  has been previously decomposed 

into [ V I T  [DJ [ V I .  In matrix nota t ion ,  

Decomposition of [A] g i v e s  

Letting 

and 

Because 

[UIT = 
1 

u23 

2K u 

the eletients of [GI can be  solved as 

j = l , M  
gl) = blj 



YBSL3A 212 

Using [4] w e  can now s o l v e  for  [ Y ]  a s  

y i j  - %j'dii '  

Now, becauee 

1 N  1 y2 UI3 ... u 

1 2N ... u u23 

3 N  1 ... u 

. 
0 

the back so lu t ion  for [Z] is 

'Nj 'Nj 

Subroutine YBSL3A uses  [ U ]  and [DJ as input,  but e-ecte them i n  a 
s p e c i a l  format. They are not  In FORMA sparse notat ion.  Input 
matrix [ B ]  aad output matrix [ Z ]  are  i n  standard FORMA sparse 
no t a t  ion .  
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Subroutine YBTAB c a l c u l a t e s  t h e  t r i p l e  ma t r ix  product  f o r  matrices i n  
FORMA sparse no ta t ion .  I n  matrix n o t a t i o n  

where 

i. = 1, NCB NRB NRB 

k- 1 L i j  = & bei “dk bkj ( J  = 1, NCB 

NRB is the  number of rows of [B] and the s i ze  of [A] (square).  
NCB i s  the number of coluams of [B] and the  size of [Z] (square) .  

Because the  number of columns of [A] must be t o  the  number of rows 
(or  the  number of row 
, then [A] must be a of 

of fB3, and because the  number of columns of 

square matrix. 
B ) mst be equa l  t o  the number of rows of 

The answer [z] is l i k e w i s e  a square  matrix. 

Theorm: If [A] is syrmnetric ( tha t  i s ,  [A] = [AIT>, then [Z] is symne- 
tr ic.  

Proof: [ZIT = ([BIT [A] [B] I T  

= [z] . 

DESCRIPTION OF TECHNIQUE 

[A] , [B] , and [Z] a r e  s t o r e d  on u t i l i t y  tapes  NVTA, NlJTB, and NUT2 
r e s p e c t i v e l y  as row p a r t i t i o n e d  matrices i n  FORMA spa r se  no ta t ion .  

P a r t i t i o n s  of matr ix  [B] a r e  read from NUTB and the l o c a t i o n  numbers 
of the non-zero elements a r e  t ransposed.  These p a r t i t i o n s  now a r e  
p a r t i t i o n s  of [BIT and a r e  s t o r e d  on NUTZ. 

Subroutine YMULT i s  c a l l e d  t o  form the product of [BIT [ A ]  . 
product i s  s to rcd  on N U T 1 .  

This 
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If [A] is no t  symetric 
t r i p l e  matrix product  (tBIT [A]) @] , and the  r e s u l t i n g  121 is s t o r e d  
on NvT2. 

If [A] 113 symnetric, the r e s u l t  of [BIT [A)is read i n t o  c o r e ,  one par- 
t i t l o n  a t  a t i m e ,  from NUTl. Each row of @IT [ A l i s  pos tmul t ip l i ed  by 
[B] g iv ing  a row of [ZJ . To save computer time, only the z i j  f o r  j = 1 , i  
are fotmed givirg the  lower h a l f  of the  syrmaetric matrix [Z] . [ Z j  is 
s t o r e d  on NUTZ. The l o g i c  used i n  t h i s  p o r t i o n  of YBTAB is a s l ighL  modi- 
f i c a t i o n  of the  l o g i c  used i n  YMULT. 

subrout ine  YMULT is c a l l e d  t o  complete the  



YDCM3A - 116 
Subrou*lne :DCM3A decomposes [ A ]  a matrix i n  F O W  sparee nota- 
t i o n  t o  f I'm an upper triangular matrix with ones on the diagonal 

[U] and a dlagonal matrix FDJ such that  [ A I  = [U] IDJ [VI. [A] 
must bc r e f l ,  square, and symmetric. The decomposition technique 
is attr ibuted to Gauss. In  matrix notat ion 

T 

m 

... 
i. u12 

c 1  

0 0  

0 0  .- 

u13 

u2 3 

1 

0 

r- 
0 

d22 O 

N is the size 

1 N  

'2N 

... u 

... 

3N ... u 

... 1 

... 

... 
0 d33 ... 

0 0  ... 

- 
0 

0 

0 

dNN - 
7 :  the matrices (square): 

DESCRIPT1C'- OF TECHNLQUE - 
To der ..;lne the elements G f  [LJ] arid [ D J ,  f i r s t  consider the  
mult 'p1icat io . i  of two - .= tr i ces .  

where [ C ]  is  a lower triangular matrix of  the form 



I C 1  = 

NN 

and [U] has been previously defined.  

Because [A] is symmetric, 

0 ... 0 cll 

0. =22 * . *  
0 

. . . . . . . . . 

- - 
N 1  

11 

‘N2 

C 

C 
- ... c2 1 1 -  

11 

0 1  ... 
C 

-. 
c22 

. . . . . . . . . 
0 0 ... 1 - - 

YDCM3A - 216 

Due to  the uniqueness of the fac tor iza t ion  of [ A ]  into the product 
of the two tr iangular matrices ,  one of which has ones on the diagonal ,  
i t  follows chat 

= [VI. 
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By d e f i n i n g  

0 ... 
22 - * *  

C 

. . . . . .  
0 ... NN C 

Equation (11 i s  thus  der ived from Equation [2 ] .  

By performing the matrix products  i nd ica t ed  by Equat ion [ l ] ,  t h e  
elements i n  [A] are ob ta ined  gene ra l ly  as 

a i j  = dll + u2 i  d22 u 2 j  + * * .  + d i i  u i j  

and 

aii 
2 2 

dll u li + dZ2 u2i + ... f dii 

From t h e s e  two equa t ions  we calculate 

i-1 
2 

ii - dkk uki dii = a 

k= 1 

(j = 2 ,  N )  

(i = 2 ,  N) 

il = 1.0 ii (i = 1, N) 

Because of t h e  shape  o f  [ A ]  s n d  t h e  corresponding shape and 
density of [VI, t h i s  decomposition i s  performed us ing  banded 
program'ing l o g i c .  [ U ]  and [DJ &re no t  s t o r e d  i n  FORMA s p a r s e  
n o t a t i o n  but  a r e  i n  a form t o  be used as i npu t  to subrou t ine  
VBSL3A. 
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MISCELLANEOUS 

The diagonal clement8 of rDJ are  the determinant ratios of [ A ] .  
The determlrant of [ A ]  is the product of these determinant r a t i o s .  
That ie, 

N 

REFERENCE 

V .  N. Faddeeve, Computational Methods of Linear Algebra. Dover 
Publ icat ions ,  I n c . ,  New York, 1959. 
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Subrout ine YDcOM2 decomposes [ A ]  a m a t r i x  i n  FOHNA sparse nota-  
t i o n  t o  form an upper t r i a n g u l a r  mat r ix  wi th  ones on t h e  diagonal  

[U]  and a diagonal m a t r i x  [DJ such t h a t  [ A ]  = [ U ]  [ U J  [ V I .  [ A ]  
muat b e  r e a l ,  square, and symmetric. The dccoinposit ion technique 
1s a t t r i b u t e d  to Gauss. In m a t r i x  notaLion 

T 

where 

[ " 1 Nr N 

and 

I 

"12 

0 1  

0 0  

0 0  - 
- 

0 

0 

0 
- 

'1 3 

5 3  

1 

0 

0 0  

0 
d 2 2  

... 

... 

. .. 

... 

... 

... 

0 d33 ... 

0 0  ... 

- 
1N U 

2 N  U 

3N U 

1 - 
- 

0 

0 

0 

d~~ - 

i l l  

N is t h e  s i z e  of  t h e  m a t r i c e s  ( s q u a r e ) :  

DESCRJPT LON OF TECHNIQUE 

To determine the elements of [U] and [DJ, f i r s t  cons ide r  t he  
m u l t i p l i c a t i o n  of two m a t r i c e s .  

.-- 

[ A I  = I C 1  [ V I  

where [C] is a lower t r i a n g u l a r  m a t r i x  of the lorn1 



0 

I C J  = 

. . . . . . . . .  
... 

and [U] tins been  p r e v i o u s l y  defined. 

A ]  is s y m m e t r i c ,  

T 

= [VI’ [CJT 

I 
= [ V I  0 ... 0 11 C 

C ... 0 
22  0 

. . . . . . . .  
... E 0 0 c - 

- 
P! 1 

11 

C 

C 
_ _  -. c2 1 1 -  ... 

11 C 

CN2 -- 0 1  ... 
2.2 C 

. . . . . . . . .  
0 0  ... 1 - 

Y D C W  - 2/4 

Due to  t h e  u n i q u e n e s s  of the f a c t o r i z a t i o n  of ill] i n t o  the p r o d u c t  
of the two t r i a n g u l a r  matrices, o n e  of which  113s ones on tile d iagona l ,  
i t  follows t h a t  
- 

N1 

11 

C 

C 
- -- 2 3. 

11 

C 

C 
1 . . .  

N2 

22 

C 

C 
... 0 1  

. . . . . . . .  
0 0  1. - 

= [VI. 



By d e f i n i n g  

0 1 . .  

. . . e . .  

0 ... NN C Y 

E q u a t i o n  [l! is t h u s  d e r i v e d  from E q u a t i o n  ( 2 ) .  

Iiy perforniing the m a t i - l x  p r o d u c t s  i n d i c a t e d  by E q u a t i o n  [ 11, i.ti[! 

e l e m e n t s  i n  [A] are o b t a i n e d  g e n e r a l l y  as  

and 

+ dii a =  ii dll uli + d Z 2  uZi + ... 
2 2 

From these two e q u a t i o n s  we c a l c u l a t e  

11 dll = a 

i -1 
2 

- %k ‘ki il i i  
d = a  

k=J. 
(i  = 2 ,  N) 

11 -. 1.0 ( i  = 1, N )  i i  

u = 0.0  
i j  

B e c a u s e  of the shape o f  [ A ]  a n d  t h e  corresponding s’iapc ar!d 
d e n s i t y  of [ U ] ,  this decomposition is p e r f o r m e d  us ing  banded  
programming l o g i c .  



For the  banded programming l o g i c  employed i n  YDCOM2, only half of [AJ is  
s tored .  
through the  l a s t  non-zero i n  the row. 
writ ten or1 NUTU and N"ID i n  FORMA s p a r s e  no ta t ion .  

Rows of [AJ a r e  s to red  which inc lude  only the d iagonal  element 
Output matrices [VI and [DJ a r e  

M I S C E L W l 3  

The diagonal  e lements  of [DJ a r e  the determinant  r a t i o s  of [A) . 
determinant  of [A] i s  the  product of these  determinant  r a t i o s .  

The 
That is, 

REFERENCE 

V. N. Faddeeve, "Computational Methods of Linear  Algebra". Dover 
Publ ica t ions  , Inc  . , New York, 1959. 
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Subroutine YDCOM3 decompose! [ A ]  a matrix Ln FWNA sparse nota- 
t i o n  to  form an upper triangular matrix with .ves  on the diagonal  

(U] and a diagonal matrix PUJ such that  [ A I  = [ U ]  II)J [ U ] .  I A ]  
must b e  r e a l ,  square, and symmetric. The dccotnposi tIvn tec!iniqiie 
l o  a t tr ibuted to Gauss. In matrix notation 

T 

- 
u12 

0 1  

0 0  

0 

0 

'13 

'23 

1 

0 

0 

0 d22. 

O d33 

0 0  

... 

... 

... 

... 

... 

... 

... 

... 

1N u 

2N U 

3N U 

1 

N is the size of the  matrices (square):  

_--- DESC.Rl I'TION GF TECHNIQUE I 

To determine the elements of [U] and [ E J ,  f i r s t  consider the 
mult ip l icat ion of two matriGes. 

where (C] i5 a lower triangular matrix of the form 



. . . .  ... c ::: NN 

and [U] has 

0 

c22 

. . .  
3 2  c 

b e e n  p r e v i o u s l y  d e f i n e d .  

f jecause  [ A ]  is s y r e m e t r i c ,  

[ A ]  = [ A I T  

T .( T 
= [ V I  [ - I  

'r = [ U ]  0 ... 0 11 C 

0 
c22 . * .  0 

, , . . . . . . . 

N 1 

11 

c 

c 
- ... c2 I 1 -  

11 C 

. . . . . .  . . ,  
0 0 . . I  1 - - 

Due .  t o  t h e  u n i q u e n e s s  of t h e  Z a c t o r i z a t i o n  of [,I] i n t o  t h e  product 
o i  the two t r i a n g u l a r  matrices, one  of which has ones on  the d i a g o n a l ,  
i t  fo l lows  that 

= [VI. 
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By def in ing  

Equation 111 i s  thus derived from Equation [ 2 ] .  

By performing the matr ix  products indicated by Equation 111, the 
elements i n  I A J  are obtained general ly  as 

aij = uli dll u l j  f u~~ dZ2 u~~ + ... + di i  t i i j  

and 

From these two equations we c a l c u l a t e  

11 dl ,  = a 

2 
dii aii dkk 'ki 

k= 1 
(i = 2 ,  N) 

u = 1 .0  ( i  = 1, N) ii  

Beearise of the shape of [ A ]  and the corresponding shape and 
densicy of [U], t h i s  decomposition is performed usinl; banded 
programming I . O ~  i c  . 



Fqr the bauded programing logic employed in YDCW3, only half of CAJ l e  
etored. 
down to  the dlagonal element of the column. Output matrices CUI and CDJ 
are  written on NVfU and NUTD i n  FORMA sparee notation. 

Colwme of [A] are stored which include only the top non-zero 

MISCELLANEOUS 

The diagonal elelwnta of lfDJ are  the d e t e d n a n t  r a t io s  of [AJ . 
determinant of [A] is the product of these determinant ra t ios .  

The 
That is, 

V. N. Faddeeve, Computational Hethode of Linear Algebra. 
cations, Inc., New York, 1959. 

Dover Publi- 



Subroutine YDIAG places the elements from a vector (row or c o l m  matrix 
into the corresponding diagonal locations of a equare matrix [Z] . 
and [Z) are stored on NUl!A and NUT2 in  FORMA sparse notation. In 

subscript notation, 

2 = 0.  
ij 

(i # j) 

The z are not stored. 

In matrix notation 
i j  

where N is  the size of [Z] (square), and the length of { A )  . 
EXAMPLE 

Consider input of 

where N = 3. 

The result of this subroutine will give 

[=33x3 = 

DESCRIPTION OF TECHNIQUE 

Vector {A) i o  read from NUTA, one partition a t  a time. The location 
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ambers for the aon-zero elemento of ( A \  are modified to reflect diagonal 
elements. These partitions are then written on NVTZ to form [z] . 



YDISA - 112 

Subroutine YDISA removes (disassembles) a m t r i x  [ Z ]  from matrix [A) 
s tar t ing  a t  a designated raw, column locat ion (IRA, JCA, respectivel..) 
in [A] . 
Matrices [A] and [Z] arc s tored i n  FORMA aparse n2: .tion. 
nota t ion ,  

The [Z] matrix must be uiLhin :he row, column limits of LA2 . 
In subscript  

‘ij = ak& 
/i = I., NRZ 
\j = 1, NCZ 

where 

k = i + I R A -  1 

l = j + J C A - l  

NRZ is the number of rows of [Z] , and 

NCZ i s  the number of columns of [Z] . 

EXAMPLE 

Consider a matrix defined a s  

6 .  7. 8 .  0. L A L A  

Matrix [2],x3 is  t o  be obtained from [A] starking a t  the  2,l locat ion 

(IRA = 2 ,  JCA = 1) of [A] . The r e s u l t  of t h i s  operation w i l l  be 

The matrix [A] reimins a s  o r i g i n a l l y  def ined.  

DESCRIPTlON OF TECHNIQUE 

Parritions of [A] arc read  from NU’rA i n t o  the f i r s t  quarters of the V 
and LV workspaces. The element l o c a t i o n s  of [ A ]  are searched f o r  
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locations i n  the range of [ZJ 
noved t o  the second quarter of V and location numbers for  there elements 
are formed i n  the second quarter of LV. The data i n  the second quarters 
of V and LV become partitions of [Z] which is stored on NVTZ. 

Any elements found i n  this range are 



YDTOS 
Subroutine YSTOD converts a dense matrix i n  core to a FORMA sparse 
matrix written on a peripheral device. Only the nonzero alemanee 
of dense matrix [A] are  stored in  sp-irse matrix [ Z j .  

a location number is formed as 
i J  ' For each a 

LV(k) = 100000 *' i f j and 

LV(k) and V ( k )  for k = 1, NNZA are then written on the peripheral 
device, where NNZA i s  equal to the nmber of nonzeroes i n  ( A ] .  



Y I N  
Subroutine YIN is used to transfer real data from a computer 
peripheral device into core. Utilization of this subroutine enables 
a programmer to easily take advantage of computer-dependent Input 
routines which may be more efficient than FORTRAN read statements. 
Data transmitted wing subroutine YOUT may be retrieved using sub- 
routine YIN. 



YINL 
Subroutine YINI is used to  transfer Integer data front a computer 
peripheral device Into core. U t i l i z a t i o n  o f  this subroutine en- 
ables a programmer to easily take advantage of computer dependent 
input routines which may b e  more e f f i c i e n t  than FORTRAN read s tate-  
ments. 
using subroutine Y 121. 

Data transmitted using subroutine YOUTI may b e  retrieved 



YLORD 

The l o g i c  i n  FORMA s p a r s e  s u b r o u t i n e s  depends on the  f a c t  t h a t  
t h e  l o c a t i o n s  of elements i n  t h e  matrices are i n  o r d e r  by row and 
column. 

Subrout ine YLORD o r d e r s  a l l  nonzero matrix element l o c a t i o n s  and 
t h e  elements.  Ordering is def ined  as fol lows:  a l l  elements of 
a row are ordered by column from l e f t  t o  r i g h t ;  a l l  rows are then 
ordered from t h e  f i r s t  through t h e  last .  

DESCRIPTION OF TECHNIQUE 

Because no p a r t i t i o n  of a FORMA s p a r s e  m a t r i x  exceeds K V / 4  i n  
length ,  f o u r  p a r t i t i o n s  of [A]  are brought i n t o  c o r e  toge ther  and 
t h e  element l o c a t i o n s  and elements of a l l  four  are ordered simul- . 
taneouely.  The method of order ing  employed i n  t h i s  process  is 
derived from t h e  method of  R. C .  Singleton.* A l l  p a r t i t i o n s  of 
[A]  are ordered,  four  a t  a time, using t h i s  process .  The ordered 
p a r t i t i o n s  then are merged t o g e t h e r  t o  form t h e  completely ordered 
matrix [Z] .  



m D 2 A  
Subrou t ine  YMOU2A c a l c u l a t e s  t h e  mode shape8 and n a t u r a l  fre- 
quenc ie s  of a s t r u c t u r a l  model desc r ibed  as 

where 

IKI - [Kj - A S  IM! 

and 

,. 

r n q  - - As [I]. 

If As = 0, then [K] = [K] and m2J = bzJ, and [l] becomes t h e  

more familiar e igen  problem 

[ K l  [Ol = [MI L O 1  b2.L 

Subrout ine W D 2 A  uses  t h e  composite s t r u c t u r e  i t e r a t i v e  Rayleigh- 
Ritz method of D r .  John Admire. 

I f  I n i t i a l  Rayleigh-Ritz coord ina te  displacements  [q] are a v a i l -  
a b l e ,  they may b e  i n p u t  t o  t h e  s u b r o u t i n e .  Otherwise random numbers 
will be used. 

l npu t  m a t r i c e s  [ K ] ,  [MI, End [qJ and o u t p u t  m a t r i x  [$: are i n  
FORMA s p a r s e  n o t a t i o n .  
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Subroutine YMULT ca lcu le t e s  the product of two matrices s tored  i n  FORMA 
sparse notat ion.  Tn matr ix  nota t ion ,  

where 

NRA is  the number of rows of [A] and [Z] . 
[B] and the number of columns of [A] . 
(B] and [Z] . 
of rows of LB] . 

NRB is the number of row8 of 
NCB is  the number of columns of 

The number of columns of [A] must be equal  t o  the number 

Theoteq: Mul t ip l ica t ion  of matrices is no t  conmutative i n  general .  
That is, 

i j  
f o r  any values of a 

Theorem: Mul t ip l ica t ion  of matr ices  i s  assoc ia t ive .  That is, 

and b 
i) 

Theoreql: Mul t ip l ica t ion  of matrices  is d i s t r i b u t i v e .  That i8, 

EXAMPLE 
7 .  -8 .  

10. 11. 12.  Consider input  of [AIlx2 = [l. 2.) and [B]2x3 

The reader can e a s i l y  verify the o u t p u t  t o  be 

= [27. 14. 3 3 . 1  . 



,DESCRIPTION OF TECHNIQUE 

Par t l t i ona  of [A) are read from N W A  i n to  the f i r s t  quar te rs  of the V 
and LV workspaces. P a r t i t i o n s  of [B) a r e  read i n t o  the second quar te rs  
of the  workspaces and a r e  prcmult ipl ied by row of [A] . 
of [Z] i e  formed i n  the t h i r d  quar te r  of V based on the row of [A] ml- 
t i p l i e d  by a l l  of DIatrAx [BJ . When the dense r r w  of [Z] is completely 
formed, the non-zeros a r e  t ransfer red  t o  the f o u r t h  quar te r  of V and an 
appropriate  vector  of loca t ion  numbers is fonaed i n  the fou r th  quar te r  
of LV. The data  generated i n  the f o u r t 5  quar te rs  of V and LV become 
p a r t i t i o n s  of [%I and a r e  written on NUTZ. 

A denee row 

L i d  t a  t i on  : 

One fou r th  of the dimension size of V and LV, ( € 3 / 4 ) ,  must exceed o r  be 
equal t o  NCB and NRB. 
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Subrout ine YMULTl c a l c u l a t e s  t h e  s p e c i a l  produst  of two FORM4 
s p a r s e  n o t a t i o n  matrices. I n  matrix n o t a t i o n ,  

NRA (; 1 1 ,  N U )  
- 1, NCB 

NRA i e  t h e  number of rows of [ A ] ,  [B], and [Z] where LA] is 
square. NCB is t h e  number of columns of [ B ]  and [Z]. NRA is 
assumed to b e  g r e a t e r  than NCB. 

[ B l  and t h e r e f o r e  [ Z ]  are aesumed t o  have no elements equal  t o  zero.  

[A], [B], and [ Z ]  are s i o r e d  0x1 u t i l i t y  tapes as row p a r t i t i o n e d  
matrices i n  s p a r s e  nota t ion .  

P a r t i t i o n s  of t h e  matrices are operated on i n  c e n t r a l  memory as 
follows ( a ,  m,  and n r e f e r  t o  p a r t i t i o n  number): 

V LV 

n o t  used 
KV not  used 

II = 1, NPARTA 

m = 1, NPARTB 

n = 1, NPARTZ 

where V and iV a r e  dimensioned work spacee and KV is t h e  dimension 
s i z e  of  V and LV. 

The number of w n z e r o  terms i n  each p a r t i t i o n  of [ Z ] ,  NNZPZ, i s  

(F]/NCll  * NCB. 

The number of rows i n  each p a r t i t i o n  of [Z], MPZ, is  NNZPZ/NCB. 

The number of p a r t i t i o n s  of [Z), NPAKTZ (=NPARTR), is (NRA-1)/ 
NRPZ + 1. 



[: . . . . . .  
. . . . . .  

*nparta 

- 

. . . .  

. . . .  
npartz z 

- - 

NFRPZ(1) = 1 

NLRPZ (1) 

NFRPZ (!PART?,) 

NLRPZ(NPART2) = NRA 

i = NFRPZ(!L),NLRPZ(!L) 
j = 1, NCB 
k = l , N R A  
9. = 1, NPARTZ 

WRPZ is the number of the first row in a partition of 2, and 

LLRPZ is the number of the l a s t  row in a partirion of 2. 



YFlULT2 
Subroutine YMULT2 c a l c ~ i l a t e s  the spec ia l  product of two FORM4 
sparse notation matrices, i n  matrix notation, 

m 

NRB 

k-1 

NRB is the number of rows of [A]  and [B] and the number of columns 

of [ A I T .  NCB is the number of rows of [A] and [ Z ]  and the number 
of columns of [ A I ,  [ B l ,  and [Z]. [ A ] ,  [B;, and [ZI are assumed t o  
have no elements equal to  zero and [ I . ]  is symmetric. 

T 

Statements from FORMA subroutine ATXBBZ are used i n  t h i s  subroutine. 



Subroutine YMULT4 calculates the special product 0 ;  a FOWW sparse 
notation matrix postmultiplied by a square matrix stored i n  core. 
In matrix notation. 

where 

NRA is the rider of rows of (A] and 121, and NCB is the number of rows 
of [B] and the number of columns of [A], [B] and [Z] .  t4RA Is greater 
than NCB. 

[A] and [Z] are assumed to  have no elements equal to  zero. 
are stored on u t i l i t y  tape6 in  FORHA sparse notation. 

They 
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Subroutine 'IMULTA ca lcu la tes  the product of two matrices stored i n  FORHA 
sparse notation. I n  matrix notation 

where 

1, NRA 
NRB 

k=l z =  a ik  bkj (f 1, NCB) ij 

NRA is tbe number of rows of [A] and [Z] . 
of [B] and the number of columns of [A] . 
of [Bj and (21 . 
number of rows of [BJ . 

NRB is tne number of rows 
NCB is the number of columns 

The number of c01umne of [A) must be equal t o  the 

'Eeorem: Multiplication of matrices ie not comanrtative i n  general. 
That is, 

for any values of a and bij. ij 

Theorem: Multiplication of -trices is  associative. That is, 

Theores: Multiplication of matrices i s  dis t r ibu t ive .  That i e ,  

EXAMPLE 

. 11. 12. 
Considcr input of [AIlx2 = [l. 2.1 and [BIZ,, = [li . -8. 

The reader can eesily verify the output to be 

= [27. 14. 3 3 . 3  . 
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DESCRIPTION OF TECHNIQUE 

P a r t i t i o n s  of [A] a r e  read from NUTA i n t o  the f i r s t  quar te rs  of the V 
and LV workspaces. P a r t i t i o n s  of [B] a r e  read I n t o  the second quar te r  
of the workspaces and a r e  premultiplied by a row of [A] . A dense row 
of [Z] i s  fonned i n  the th i rd  quar te r  of V based on the row of [A] mul- 
t i p l i e d  by a l l  of matrix [B] . When the dense row of [Z] is completely 
formed, the non-zeros a r e  t ransfer red  t o  the four th  quar te r  of V and an 
appropriate  vector  of loca t ion  numbers is formed i n  the fou r th  qua r t e r  
of LV. 
p a r t i t i o n s  of [ZJ and a r e  wr i t ten  on NUTAZ. Matrix [A) is, therefore ,  
replaced by matrix [Z] i n  t h i s  subroutine.  

The data  generated i n  the fou r th  quar te rs  of V and LV become 

Limi ta t i on  : 

One four th  of the dimension s i z e  of V and LV, (KV/4), must exceed or be 
equal  t o  and NCB. 
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Subroutine YMULTB ca lcu la tes  the proauct of two matrices s tored In POIMA 
sparse notLlon .  I n  matrlx notat ion 

where 

MA is the number of rows of [A] and [ZJ . 
[B] and the number of columns of [A] . 
[B] and [Z] . 
of rows of [B] . 

NRE i s  the number of rows of 
NCB is the number of columns of 

The number of columns of [A] must be equal t o  the number 

Theorem: Mult ipl icat ion of matrices is not  commutative i n  general. 
That is, 

f o r  any values of a and b i j .  il 
Theorem: Mult ipl icat ion of matrices i s  associat ive.  That is, 

Theoren: Multiplication of matrices is d i s t r ibu t ive .  That is, 

EXAMPLE 

Consider Input  of [AIlx2 f [l. . 11. 12. 
7 .  -8.  

2.) and [BlZx3 [lo 

The reader can easily verify the ou tpu t  to  be 

. 11. 12. 

. -8. '3 
= [27. 14. 33.1 
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DESCRIPTION OF TECHNIQUE 

Par t i t i one  of [A] a r e  read from NUTA i n t o  the f i r s t  quar te rs  of the V 
and LV mrkapacee.  P a r t i t i o n s  of [B] a r e  read i n t o  the second quar te rs  
of the  workspaces and a r e  premultiplied by a row of [A ]  . 
of [Z] is formed i n  the t h l r d  quarter  of V based on the row of [A] mul- 
t i p l i e d  by a l l  of matrix [BJ . When the dense row of [Z] ie completely 
formed, the non-zeros a r e  t ransfer red  to  the four th  quar te r  of V end an 
appropriate  vector  of loca t ion  numbers is formed i n  the fou r th  quarter  
of LV. The data  generated in the f o u r t t  quar te rs  of V and LV become 
pa r t i t i ona  of [Z] and a r e  wr i t t en  on NUTBZ. Matrix [BJ is therefore  
replaced by matrix (Z] i n  t h i s  subroutine.  

A dense row 

Limi ta  t Lon : 

One four th  of the  dimension s i z e  of V and LV, (KV/4), must exceed o r  be 
equal  to NCA and NCB. 



YNOZEn 
Subroutine YNOZER scans each partit ion of a FORMA sparse matrix 
and deletes any terms equal to zero. 
subroutines becomes inef f iciect i f  matrix terms equal to  zero are 
stored and operated on. I f  prior matrix operations have computed 
values i n  [A]  such that any a are equal to  zero, these a arc? i.l i j deleted. 

The logic of sparse matrix 



YOUT 
Subroutine YOUT is used t o  transfer  real data from computer centra l  
memory to a per ipheral  dev ice .  U t i l i z a t i o n  o f  t h i s  subroutine 
enables a programmer t o  e a s f l y  take advantage of computer-dependent 
output rout ines  which may be mere e f f i c i e n t  than FOKTRAN write 
statements.  Data transmitted us ing  si,broutine YOUT may be  re- 
t r i eved  using subroutine YIN. 



Y OUT I 

Subroutine YOUTI i s  used t o  transfer integer data from computer 
central memory to  a peripheral device.  Ut i l i za t ion  of t h i s  sub- 
routine enables a programmer t o  eae i ly  take advantage of ccmputer 
dependent output routines which may be  more e f f i c i e n t  thai, FORTRAN 
write statements. Data transmitted using subroutine YOUTI may b e  
retrieved using subroutine YINI. 



Y PART 
Subroutine WART partit ions newly generated matrices and reparti- 
t ions ex is t ing  matrices in which the partit lon length is not 
compatible with the work -pace dimension (KV) of the current 
computer program. Partitioning ensures that no matrix row spans 
two partit ions and the length of a l l  partit ions I s  less than or 
equal t o  one fourth of KV. 



YPNCHD 

Subroutine YPNCHO punches a m a t r i x  A 
e l i m i n a t e  round-off e r r o r .  hatr ix  E3 A i s  s t o r e d  on NUTA i n  FORMA s p a r s e  
n o t a t i o n .  O c t a l  r e p r e s e n t a t i o n  of t he  matrix elements  i s  used because 
i t  g i v e s  a n  e x a c t  r e p l i c a  of the  b ina ry  number used by a d i g i t a l  computer. 
A decimal r e p r e s e n t a t i o n  w i l l  n o t  g ive  a n  e x a c t  r e p l i c a .  
punched c a r d s  is t o  be ueed on ly  as an emergency backup f o r  t he  m a t r i x  
w r i t t e n  on a s t o r a g e  t ape .  

o n t o  c a r d s  u s i n g  o c t a l  format t o  

The ma t r ix  on 

Th i s  matrix on c a r d s  i s  compatible  wi th  the i n p u t  form f o r  Subrout ine 
YREADO. A group of up t o  t h r e e  coneecu t ive  elements from a row of the  
m a t r i x  are punched on each  c a r d .  
zezo, punching of t h i s  c a r d  i s  suppressed.  

I f  a l l  of t he  elements  of a group are 

The f i rs t  c a r d  punched c o n t a i n s  the ma t r tx  name ( i n  c a r d  columns 1-61, 
t he  m a t r i x  row s i z e  ( i n  c a r d  columns 7-10), the ma t r ix  column size ( i n  
c a r d  coiumns 11-15), and the  matrix shape ( i n  c a r d  columns 16-21). 
is followed by t h e  matr ix  d a t a .  On any c a r d  of t h e  m a t r i x  d a t a ,  t h e  f i r s t  
i n t e g e r  number (card columns 1-5) is t he  row number of the matrix elements 
on tha t  c a r d .  The second i n t e g e r  number (card columns 6-10) i s  the  column 
number of t he  matrix element i n  the f i r s t  d a t a  f i e l d  (card columns 14-25). 
The next  group c o n t a i n s  o c t a l  numbers (up t o  t h r e e  numbers i n  c a r d  columns 
14-25, 29-40, 44-55) t h a t  a r e  the va lues  of the  matrix elements.  Th i s  
group of m a t r i x  elements is given i n  consecu t ive  column o r d e r .  The l a s t  
c a r d  punched c o n t a i n s  t e n  zeroes  i n  c a r d  co'.umns 1-10 t o  i n d i c a t e  the  end 
of the matrix. 

Th i s  



YPUNCH 

Subroutine YPUNCH punches a matrix [A ]  of r e a l  numbers (a Fortran term 
f o r  numbers with a decimal point)  onto cards .  Matrix [A] is s tored  on 
NUTA i n  FORMA sparse  notat ion.  
the input  form f o r  Subroutine YREAD. 
elements from a row of the matrix a r e  punched on each card.  I f  a l l  of 
the elements of a group a r e  zero, punching of t h i s  card is suppressed. 

This matrix on cards  is compatible with 
A group of up t o  four cor,secutive 

The f i r e t  card punched contains  the matrix name ( i n  card columns 1-6), 
the metrix row s i z e  ( in  card columns 7-10), the matrix column size ( in  
card coluums 11-15), and the matrix shape ( i n  card columns 16-21). 
is follotjed by the m t r i x  da ta .  On any card of matrix da t a ,  the f i r s t  
in teger  number (card columns 1-5) i s  the row number of the matrix elements 
on that card.  The second in teger  number (card colunms 6-10) is the column 
number of the matrix element i n  the f i r s t  data  f i e l d  (card columns 11-27). 
The next group contains  r e a l  numbers (up t o  four numbers i n  card columns 
11-27, 28-44, 45-61, 52-78) tha t  a r e  the values of the matrix elements. 
This group of matrix elements is given i n  consecutive column order .  The 
l a s t  card punched contains  ten zeroes i n  card columns 1-10 t o  ind ica te  
the end of the matrix. 

This 
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Subrout ine YREAD reads a ma t r ix  of real  numbers (a FORTRAN term 
f o r  numbers with a dccimal p o i n t )  from eit1:x c a r d s  bf t a p e  and 
s t o r e s  t h e  matr ix  on a u t i l i t y  t a p e  i n  FOlL-4 s p a r s e  n o t a t i o n .  
matrix i s  then p r i n t e d  so t h a t  t h e s e  i n p u t  d a t a  are recorded w i t h  
t h e  ariwers of a run. A p r i n t  suppres s ion  op t iou  j k  a v a i l a b l e  
f o r  a m t r i x  read from &ape. On op t ion ,  t he  ma t r ix  read f r o n  
e i t h e r  ca rds  o r  tape may be wri t t en  on a tape (by Subrout ine 
YWTAPE) . 

The 

The f i r s t  d a t a  card read by Subrout ine YREAD concains informatior  
t o  i n d i c a t e  whether ca rds  o r  t a p e  w i l l  b e  used. The informati.on 
en te red  on t h i s  ca rd  ( m d  subsequent cdrds  f o r  card i n p u t )  is given 
below. The format i a  i i d e r i t i c a l  t o  t h a t  used by Subrout ine READ. 

Card Data Input Form 

Required e n t r i e s  are deaoted by an * synbol  below. 
en t ry  i s  o p t i o n a l  

Any o t h e r  

Card 
Columns 

F i r s t  Card 1-6 

7-10 
11-15 
16-69 

16-20 

a 

4J 

5 
73-78 

Format 
Type (1) Entry 

A 

I 
I 
A 

A 

or 

A 

o r  

*Matrix Name. Will appear i n  

*Matrix Kow S ize .  
fcMetrix Column S i z e .  
Any remarks t o  f u t h e r  i d e n t i f y  
t h e  inpu t  ma t r ix .  
The word upper (or  lower) must 
be  s p e c i f i e d  i f  on ly  t h e  upper 
(or  lower) h a l f  of a symmetric 
ma t r ix  i s  on t h e  punched c a r d s .  

4. Only i f  t h e  Write-Tape is  
t o  b e  i n i t i a l i z e d  by Subrout ine 
INTAPE. The Write-Tape i d u n t i -  
f i c a t i o n  w i l l  be from ca rd  

Anything o t h e r  than $ i s  t h e  
\JriLe-Tape is n o t  t o  be  i n i -  
t i a l i z e d ,  
The Write-Tape C d e n t i f i c a t i o n .  
( e  g., T1234j. Use with $ i n  
card c o l u r i  7 2 .  
REWIND. The Write-Tape w i l l  
be  rewound b e f o r e  being used. 

p r i n t o  a' . 

C O l U t N t S  73-78. 
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( COA1?d) 

Card 
Columns 

73-76 r 
79-80 

Fo rma t 
Type (1) Entry 

or LIST. The Write-Tape w i l l  be 
l i s t e d  by s u b r o u t i n e '  LTAPE 
after t h e  matrix h a s  been 
w r i t t e n  on t h e  Write-Tape. 
Anything else w i l l  be ignored. 
The jJrite-Tape Number (e.g., 21). 

b e  written on tape.  

o r  

u r  Slank i f  t h e  ma t r ix  is n o t  to 
I 

Hiddle Cards 1-5 I *Row Number of matrix elements 
on card.  

6-10 I *Column Number of matrix ele- 
ment i n  f i r s t  d a t a  f i e l d .  

11-27 E * F i r s t  d s t a  f i e l d  w i t h  m a t r i x  
elements. (2) 

2 8-4 4 E *Second d a t a  field with ma t r ix  
elements.  (2) 

45-61 E +Third d a t a  f i e l d  w i t h  ma t r ix  
elements.  (2 )  

62-78 E *Fourth d a t a  f i e l d  wi th  matr ix  
elements. (2) 

Last Card 1-10 I *Ten zeroes .  

Note (1) Format Type A a l lows any keypunch symbol. 
Fqrmat Type I a l lows  only i n t e g e r  numbers r i g h t  j u s t i f i e d  
i n  t h e  f i e l d .  Format Type E al lows only real numbers 
(a  FORTRAN term f o r  numbers wich a decimal p o i n t )  any- 
where i n  the  f i e l d .  

Note (2)  Only nonzero elements need b e  entered. 

A.-. a n  example of card inpu t  t o  Subrout ine YREAD cons ide r  t h e  f o l -  
iowlhg matrix:  

p. 0. 3 .  0. 6 .  5;1 
[Al*C]3A6 = I O .  2. 4 .  0. 0. O 0  I p. 7. 0. 0. 0. 0.J. 

T h i s  matr ix  is d s o  io b e  w r i t t e n  on tape iiuinber 21 tl-at i s  to 
be  i n i t i a l i z e 6  and i d e n t i f i e d  as  T 4 3 3 4 .  Figure 1 demonstrates  
how t h l s  i n fo rna t ion  could Le w r i t t e n  on a coding form t o  f a c i l i -  
t a t e  key?unching to  ca rds .  
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Tape Daca Input Form 

Required e n t r i e s  are denoted wi th  a n  * symbol below. 
e n t r y  is n p t i o n a l .  

Any other 
Only one ca rd  is used f o r  each matrix read. 

Csrd Format 
COlUnnS TyF2 (1) Entry 

11-15 I 

4 28-69 1% 

One Card 1- 7 A *Name of m r r i x  t o  b e  read from 
t h e  Kead-Tape. 

10 Zero. The Read-Tape will move 
forward from its p r e s e n t  posi- 
t i o n  and s e z r s h  t o  t h e  end of 
t h e  tape.  I f  t h e  matrix is 
no t  found apon t h e  f i r s t  end- 
o f - t ape  encounter ,  t he  t ape  
will au tomat i ca l ly  rewind and 
make one m D r e  pass .  I f  i t  is 
n o t  found on t n e  second end-of- 
t a p e  encounter ,  an e r r o r  message 
w i l l  b e  p r i n t e d  and tk.e program 
w i l l  s t o p .  

ma t r ix  O i l  the Read-Tape. Tape 
will b e  pos i t i oned  a t  t h e  be- 
g inn ing  of t h e  l o c a t i o n  s p e c i f i e d  
and  then con t i cue  as desc r ibed  
above f o r  a ze ro  ir. colurcn 10. 

*The Kead-Tape Number (e.g., 11). 
I f  p o s i t i v e ,  t h e  matrix read will 
b e  p r i n t e d  i n  the ou tpu t .  lf 
n e g a t i v e ,  r!ie ma t r ix  read will 
n o t  be p r i n t e d  i n  t h e  ou tpu t .  

*Run nuaber OI c a t r i x  t o  be  read 
from the Ri-ad-Tape. 
RELJXD. 
rewoanc! beCz::-z 5sLng u e d .  

0 r L I S T .  The Read-Tape will be 
l i s t e d  by  Subrouti.ne LTXPE. 

c r  . Inv th ing  e l s e  wi 11 be considered 
as part- of  t!?e r ena rks  descr ibed 
beiow. 
Any remarks to  fur ther  i d e n t i f y  
t h e  inpu t  matr ix .  

7-10 T or  Minus t h e  l o c a t i o n  number of 

T h e  Read-Tape u r l l  b - 
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Card 
C O l U ~ S  
- 

72 

72 

73-78 

73-78 

73-76 

73-78 
79-80 

- 

Format 
Type (1) 

or 

A 

or 

or 

o r  
I 

or 

Entry 

$. 
t o  %e i n i t i a l i z e d  by Sub- 
r o u t i n e  INTaE. The Wri&2- 
Tape i d e n t i f i c a t i o n  w i l l  b e  
from ca rd  columns 73-78. 
Anything o t h e r  t han  $ i f  t h e  
Write-Tage is- n o t  t o  be in i -  
t i a l i z e d .  
The Write-Tape i d e n t i f i c a t i o n  
(e.g., T1234). Use with $ i n  
ca rd  column 72. 
REWIND. The Write-Tape w i l l  
be  rewound b e f o r e  be ing  used. 
LIST. The Write-Tape will b e  
l i s t e d  by Subrou t ine  LTAPE 
af ter  t h e  matrix h a s  been 
w r i t t e n  on t h e  Write-Tape. 
Anything else w i l l  b e  ignored. 
The Write-Tape Number (e.g., 
2 1 ) .  
Blank i f  t h e  matrix is n o t  t o  
b e  w r i t c e n  on t ape .  

Only if t h e  Write-Tape is 

Note (1) Format Type A a l lows  any keypunch symbol. 
:;ormat Type I a l lows  oiily i n t e g e r  numbers r i g h t  j u s t i f i e d  
i n  t h e  f i e l d .  

As examples of t a p e  inpu t  t o  Subrout ine YREAD consider :  

Example 1. A n a t r i x  named AB2 with run number of RUN-46 is t o  
be  read from tape number 11 i n t o  tne computer and 
p r i n t e d .  Th i s  ma t r ix  is a l s o  t o  be w r i t t e n  on t ape  
number 22 t h a t  i s  t o  be i n i t i a l i z e d  and i d e n t i f i e d  as 
T4321. 

Example 2 .  A m a t r i x  named X Y Z 4  with run number cf TKD is on t ape  
number 13  t d i c e .  'The f i r s t  time is  a t  l o c a t i o n  29 
and  ne second t i m e  i s  a t  l o c a t i o n  5 4 .  I t  i s  d e s i r e d  
to  read t h e  second matr ix .  

Figure 2 demonstrates how these  two examples would b e  w r i t t e n  on 
a coding form t o  f a c i l i t i a t e  keypunching t o  cards.  
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Subroutine YRBADO reads a matrix (A] from o c t a l  numbers on carde. 
(A] is then s tored on NUTA i n  FORHA sparse notat ion.  
s ide  by s ide  in both o c t a l  and decimal so t ha t  these input da ta  a r e  re- 
corded with the answers of a run. 

Hattix 
The matrix i o  printed 

The primaty purpose of subroutine YREADO is t o  read a matrix from punched 
cards without round-off e r ro r .  
Octal representation of the matrix elements is used because i t  gives an 
exact rep l ica  of the binary number used by a d i g i t a l  computer. 
representation v l l l  not give an exact rep l ica .  The matrix on punched carde 
is to be used only as an emergency backup f o r  the matrix wr i t ten  on a s tor-  
age tape. 

The cards a r e  punched by Subroutine YPNCW. 

A deciuml 

Because of the emergency backup nature of input data t o  t h i s  Subroutine 
YREADO, only cards a re  read. 
ava f l ab le  . No tape retding or wri t ing  options a r e  

The infomut ion  entered on the data cards 13 given below. 
tries a re  denoted by an * symbol. Any other  en t ry  is  optional.  

Required en- 

- Card Format - Columns 2 Y P U  Entry 

F i r s t  Card 

Middle Cards 

1- 6 

7- 10 
11- 1s 
16- 2 1  
22- 69 

1-5 

6- 10 

14- 25 

2 9- 40 

44- 55 

La8 t Card 1- 10 

A *Matrix Name. ( W i l l  appear i n  

I *Matrix Row Size. 
I *Matrix Column Size. 
A *Matrix Shape. 
A Any remarks t o  fu r the r  ident i fy  

I *Row Number of matrix elements 
on card.  

I *Column Number of matrix element 
i n  f i r s t  data f i e l d .  

0 *F i r s t  data f i e l d  with matrix 
elermnts. (2) 

i) *Second data f i e l d  with matrix 
elements. (2) 

0 *Third data  f i e l d  with matrix 
elements. (2) 

I *Ten Zerces. 

p r in tout  .) 

the input matrix. 

Note (1) Format Type A allows any keypunch symbol. 
Format Type I allows only in teger  numbers r i g h t  j u s t i f i e d  i n  
the f i e l d .  Format Type 0 allows only oc t a l  numbers. 

Note (2) Only non-zero elements need be entered. 
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No examples of input are given because data would not be keypunched for 
input tti Subroutine YREADO but rather obtained from Subroutine YPNCHO. 



Subroutine YR8VAD rearranges (revisee) the rowe and columns of 8 matrix 

defined matrix [Z in] [A] , CZ id , 
vectors. 
of [A3 i n  [Z] . 
of each column of [A) i n  [Z] . 
use of this subroutine. 
as a l l  zeros,  Subroutine YZERO could be used. 
thought of i n  subscr ipt  notat ion as 

[A) , mult ip l ies  [A] by a scalar alpha, 

NUT2 i n  FQW sparse notation. The is epecif ied by two 

r e s u l t  t o  a previously 
a r2  s tored on W T A  and 

The f i r s t  vector  (IVEC\ gives the new row locat ion of each row 
The second vector (JVEC) gives the new :olmm locat ion 

The [Z] matrix mst be defined before the 
For instance, i f  [Z] i s  to  be o r ig ina l ly  defined 

The YREVAD operation can be 

=kl  (out) = zke (in) + a a i J  (; ," :: E) 
where 

NRA is  the number of rows of [A] , and NCA is  the number of columns 
of [A] 

t i ve  value changes the s ign  of the corresponding row n r  column 
Values i n  {IWCI and (JVECI may be positive, negative o r  zero. 

[Z] . [Alzero vaLue omits the corresponding row o r  column of 
The values a r e  integer  numbers. 

This subroutine may be ca l led  repeatedly t o  form [Z) from the revision/ 
addi t ion of several  [A) matrices. 

An important use of Subroutine YREVAD i s  t o  revise and add the e t l f f n e s s  
matrix of a s t ruc tu ra l  component t o  the s t i f f n e s s  matrix of the coaplete 
~ t r u c t u r e  to  account f o r  the difference i n  coordinate eystems. 

The f i r s t  example t o  i l l u s t r a t e  t h e  YREVAD OF r a t ion  is as follows. 
Matrix [ZJ has been previously defined a s  

1. 0. 0. 0.  0. 
b 5  = [:: a: 0 .  3.  ;: 

0 .  0. 0. 0. 
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Let  [A) be defined as  

3 .  

row of [A] is to be omitted from [Z] , the third row of 
The first row of [A] i s  to  be added to the third row of 

to the first row of [Z] , with the sign of each element reversed. 

The f i r s t  column of [A] i s  to be added to the second coluom of [Z] with 
the sign of each element reversed, the second column of [A] is to be 
added t o  the f i f t h  column of [Z] . 

Kl Thus (JVEC\2xl = 

Then. arsuaing a 1.0 and placing ( I y j  and (JVECI adjacent to [A ]  
to a i d  in visualizing tk. 

1. 

[d4x5 = [ O *  0 .  

0 .  

1. 
0 .  

0 .  

0. 

Q. 
2 .  

0 .  

0 .  

0 .  

2 .  

0. 
0. 

0 . 
-I 

r). 

3. 
0. 

0 .  

0. 

3.  
0. 

revision of [AJ , we have 

0 .  

0 .  

4. 
0. 

0. 
0. 

4. 
0. 

::] 5 .  3. 1.0 

6 .  

0. 

0. 
5 .  

6 .  

[ -1 :] 1; 5 .  

I: + 1.0 0 .  
0. 
0. 

5 

2. 

4 .  
6 .  

-3 .  0. 0 .  

- 5 .  0. 0 .  6 .  
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1. 0. 

?. 

0. =I: 0 .  

1 .  5. 

0 .  2 .  

0. -1. 

0. 0 .  

0. 

u . 
3. 

0. 

0. 

0.  

3. 

0. 

il. 0 .  

v. 0. 

4 .  5 .  

u. b.  

0. - b *  

u. 0.  

4 .  7. 

0 .  b ,  

+ 

A second example of the use of t h i s  subroutinc denonst rates 
the coordinate transformation concept which is n very inrportnnt 
application of YREVAD. I t  is desired to transform ;I stitEiicss 
matrix from an original coordinate systeiii (subscript 1) to 3 
final coordinate system (subscript 2 )  as slivwii i n  the sketch below. 

* 2  

For this example, the stiffness matrix i n  tlic original coordin;ltc 
system is assumed to bc 
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From i n s p e c t i o n  of t h e  c o o r d i n a t e  sys tem a x e s  i n  t h e  above ske te l i ,  

To o b t a i n  t h e  v e c t o r  on t h e  r i g h t  hand s i d e  of t h e  e q u a t i o n :  

X I  of t h e  o r i g i n a l  c o o r d i n a t e  sys tem is t o  be the second 
row of t h e  f i n a l  c o o r d i n a t e  sys tem w i t h  the s i g n  revr?rsed.  

y1 of t h e  o r i g i n a l  c o o r d i n a t e  systeni  is t o  be t h e  t h i r d  
row of t h e  f i n a l  c o o r d i n a t e  system. 

21 of t h e  o r i g i n a l  c o o r d i n a t e  sys tem i s  t o  be t h e  f i r s t  
row of t h e  f i n a l  c o o r d i n a t e  sys t em w i t h  t h e  s i g n  r e v e r s e d .  

The (IVECI t o  accompl ish  t h i s  change is  

Apply t h i s  (IVECI as t h e  { IVEC)  and {JVEC) t o  the 
n e s s  m a t r i x  t o  o b t a i n  t h e  f i n a l  s t i f f n e s s  m a t r i x .  
i s  ana logous  t o  t h e  change i n  c o o r d i n a t e s  made i n  
product  procedure .  

[-2 3 -13 
6 .  4 .  

4 .  1. 

- 9  -. 

o r i g i n a l  s t i f f -  
'1'1 i i s ai) p 1 i c a t i on 

t-he t r i p l e  m a t r i x  

:'I 3 .  

The above YREVAD procedure  may be compared w i t l i  t h e  more conveii- 
t i o n a l  t r i p l e  m a t r i x  p roduc t  procedure  bdlow. 



YREVAD - 5 / 6  

The eqfls t ion f o r  the coord ina te  transformation would tic 

The  s t r a i n  energy expres s ion  with t h c  s t i f f n e s s  matr ix  is 
*r given by L =.+ {q )  I h :  { q \  o r  fo r  coord ina te  system 1, 

2. 4 .  

u = 4 I X l  Y1 213 1: 3 .  5. 

4 .  5. 6 .  

S u b s t i t u t i n g  Equation (1) into (2 )  g ives  

t h u s  the i n n e r  t r i p l e  matr ix  product bives  ttie s t i f f n e s s  ma t r ix  
i n  coord ina te  system 2 ,  i . e . ,  

6. 4 .  -S. 

1. - 3  *. I.: - 2 .  3 .  

w h i c h  i s  the same r e s u l t  as t h a t  obtained from t h e  W V A D  procedure.  

TIie advantages of using thc YREVAD procedure over t i le  Lr ip le  
matr ix  product prccedure are: 

1) Less computer t ime; 

2 )  Less computer core i s  u s e d ;  

3 )  U s u a l l y  eas i er  t c l \  code the {L’v’I,;C\ ( ~ I i u s  {JViX\ j 
than t o  code the  transforni.itioii iii;it r i  x .  
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-E 

Netrix [A]  i e  read from NVTA and the non-zero element location numbers 
are replaced according to the contents of {IVECI and IJVECI . Th rign 
of the non-zero elements is  changed accordingly and the revised t] i s  
rtored on NUTl. 
Subroutine YAABB is then ca l led  to sum [A] and [ Z  fn] . 
matrix [Z out] :s stored on NVTZ. 

Matrix [Z in] Is read from NUT2 and stored on NUT2. 
The result ing 
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Subrout ine YRTAPE r e a d s  p a r t i t i o n s  of a s e l e c t e d  FORMA s p a r s e  
n o t a t i o n  matrix from a FORMA r e s e r v e  t a p e  ( d i s c )  i n t o  t h e  cum- 
p u t e r  core and s t o r e s  them s e q u e n t i a l l g  on a u t i l i t y  t a p e  t o  b e  
opera ted  on by otl-.er FORMA subrout ines .  
i s  i d e n t i f i e d  by t h e  d e s i r e d  run number and m a t r i x  name. This  
procedure ?s accomplished by searching  t h e  matrix headings (See 
Subroutine YWTAPE explana t ion . )  u n t i l  a match wi th  t h e  d e s i r e d  
run number fird matrix name is obta ined ,  and then reading  t h e  matr ix  
elements and element l o c a t i o n s  i n t o  c o r e  &nd s t o r i n g  them on a 
u t i l i t y  -ape. This  procedure i s  repeated f o r  each matr ix  p a r e i t i o n .  
The search  s ta r t s  from t h e  c u r r e n t  p o s i t i o n  (does n o t  rewind) of 
t h e  t a p e  ( d i s k )  and proceeds t o  t h e  EOA (end of tape def ined  i n  
subrout ine  YWTAPE explana t ion) .  If t h e  d e s i r e d  m a t r i x  was not  
found upon reaching t h e  EOT, a rewind is p s ' m n e d  and one more 
search  t o  t h e  EOT is made. I f  t h e  d e s i r e d  matrix is again n o t  
found, (1) an e r r o r  message is p r i n t e d ,  (2)  a l i s t i n g  of  t h e  
matrix headings is p r i n t e d  (See Subrout ine LTAPE w r i t e u p ) ,  nLLrl  
(3) t r a n s f e r  is made t o  Subrout ine ZZBOMB where t h e  program 14 
terminated. 

The mat r ix  t o  be s e l e c t e d  



YRVADl 

Subroutine XRVADl performs a spec ia l  case of th2 function performed by 
FORHA Subrcutines RMIADD and YREVAD (see subroutine explanations f o r  
rhese subroutines). Subr mtine YRVADl rearranges ( tevises)  the ro-as 
and coluams of a matrix !-A') , n u l t i p i i e s  :A] by a scalar alpha, and adds 
the r e s u l t  to a previously defined matrix 
FORMA dense stcrage.  [Z in! and [Z out) a re  s tored on NVTZ i n  F O S U  
sparse notation. YRVAD1 m y  be used only when [A) , [Z in] , and [Z out) 
are a l l  s y t r i c .  Because of t h i s  synmetry, only one vector IIJVEC) is 
required fo r  the revis ion of matrix [A] . 

Z in] . [A) is a matrix in 

DESCRIPTION OF TECHNIQUE 

Any non-zero elements in [A] are  s tored i n  workspace V. 
numbers a re  formed fo r  the corresponding elements i n  workspace LV. 
elements of [A) are  then stored on NUT1 in FORHA sparse notation. 
[Z in] is read from NUT2 and stored on m 2 .  
to add sparse matrix [A) to  matrix [Z in] and the resu l t ing  matrix [Z out] 
is stored on NUTZ. 

Zlement location 
These 

Matrix 
Subroutine YAABB is ca l led  

L i d  t a  tion: 

The dinrensfon s i z e  of V and Av' must exceed o r  be equal to the number of 
non-zero elements i n  matrix [A] . 



YRVADZ 
Subroutine V'.QD2 reads  s m e l l  dense matrices and integer vector8 
from a u t i l i t y  t ape  (disk)  and uses  the  vec to r s  t o  re-qise t h e  
matrix loca t ions  t o  form large spvree matrices. These sparse 
matrices are then summed t o  form one large matrix i n  FORMA sparse  
no ta t ion  121. Because the  small matrices are assumed t o  be  sym- 
metric, [Z] i e  also symetric and only t h e  lower ha l f  is formed. 
Only matr ix  elements having an abso lu te  value g r e a t e r  than 
are summed i n  [Z] .  Subroutine YRVADZ reads matrices from t h e  
u t i l i t y  tape  u n t i l  a blank record is found. 



Subroutine YRVISl rearranges (revises) the coluums of a matrix [A’) i n  
FORMA dense storage to  form matrix [Z] in FORMA sparse notatiqn. The 
rows of [A] a r e  not rearranged, thus only one in teger  vector IJVEC) 
need be input  t o  this subroutine. 

DESCRIPTION OF TECHNIQUE 

The non-zero elements of (A) a r e  s tored i n  workspace V. 
numbers are foraped i n  workspace LV corresponding t o  the elements i n  V. 
(21 , composed of these elenrents and locat ions,  is stored on NvT2. 

Element locat ion 

Limitation: 

The dimension s i z e  of V and LV mst exceed o r  be equal t o  the nurnber of 
non-zero elements i n  [A) . 
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SubroutIneYSREDZ operates on tlie stiffness matrix [ A ]  to  form a 
, reduced stiffness matrlx [R] and/or the reducing ttansfcrnwtion 
[TI. Tlre relation between tlie stfffness matrix [ A ] .  dlsplilctrments 
{XI, and applied fJrces {B} m y  be expressed in matrix form as 

The reduction nrctliod assumes Eq [ l ]  to be partitioned as 

where { X  1 are the displacements to be reduced out and { X z )  

are the displacements to be retained. The applied forces acting 
on the coordinates to be reduced are assumed to be zero, such that 

1 

Substituting Eq [ 3 ]  into Eq [ 2 ]  and expanding the upper partition. 
will yield the reduced displacements in terms of the retained 
displacements as 

Expanding the lower partitions of Eq [ 2 ]  and substituting Eq [4] 
will yield the  reduced stiffness matrix as 

where [ R ]  is the reduced stiffness matrix and is expressed 3s 

The reducing transformation [TI inay be expressed using Eq (41 as 



where 

Also 

I)ESCHIPTION OF TECHNIQUE -- 
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(81 

This subroutine rises Causs reduction partially completed to form 
matrix [ R ]  and [TI from stiffness matrix [ A ] .  As an example of 
the rwthod, consider three simultaneous e q u a t i o n s  of the following 
form 

all *1 + a 12 x2 + a13 x3 = bl 

a21 '1 + '22 x2 + '23 x3 b2 

'31 ' 1  + a 32 '2 + a33 x 3  = b3 

These equations may be written in matrix form as 

Solve  the Eirst Equation for x as 1 

bl x3 + - al 3 - -  a12 
t -  -- 

li a 11 x2 =ll a 

Substituting Eq [ I 2 1  into the second and third e q u a t i o n s  l r r  Eq [ll] 
and divide the first by all results in 

* * 
' 12  a13 

a22 23 
* * 

a 

* I  * 
- '32 '3q 
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where 

* a12 
=12 = - all 

* a13 

11 13  a 
a P -- 

* =12 a21 

11 "22 E a22 - a 

* - a13 a21 

11 a23 a23 a 

* a12 a31 
"32 a32 - --- a 11 

* - a13 a31 
11 a33 = a33 a 

bl = - * bl 

all 

b i  = b2 - bl a21 

11 a 

* bl a31 b 3  = b3 - -- 
all 

So lve  t h e  second e q u a t i o n  for x2 which w i l l  y i e l d  

p - .- a* 2 3  b; * x3 + --<- 
"22 22 a x2 

S u b s t i t u t e  Eq (231 i n t o  t h e  t h i r d  e q u a t i o n  i n  Eq (131 and d i v i d e  
t h e  second equat ion by a;2. T h i s  r e s u l t s  in - - * it 

'12 a13 
** 
23 0 1  a 

S r t  
0 0  

1 i- 2 

'L 3. 

1231 
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where * 
** a23 = -.-_ a2 3 * 

9 2  
1251 

** b; b2 - * 
=22 * *  

*2 2 

The reduced stiffness matrix has been formel and is contained as the  

a element. This can be shown i f  in Eq [ 2 1  we let 
A *  

33 

a22 "I 
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S u b s t i t u t i n g  Eq 1311 through [ 3 4 ]  i n t o  Eq (61 r e s u l t s  in a reduced 
stiffness matrix o f  t h e  form 

"21 a23 a31 +- a12 '13 '32 - a13 .---.--- a22 '31 - '11 _--.-_ "23 a32 [K) - a33 + ---- 
"11 a22 - a12 =21 

Equation [ 3 7 ]  is i d e n t i c a l  to the r e s u l t  o b t a i n e d  by expanding 
Eq [26] .  Thus .  Cause r educ t ion  p a r t i a l l y  completed y i e l d s  t h e  
reduced s t i f f n e s s  matrix. 

The reducing t r ans fo rma t ion  may also be o b t a i n e d  us ing  Gauss re- 
d u c t i o n  If a d d i t i o n a l  o p e r a t i o n s  are performed. From Eq [ 2 4 ] ,  

2 solve t h e  second equatior.  f o r  x 

** ** 
2 3  x3 + b2 x = - a  2 

S u b s t i t u t e  Eq [38]  i n t o  t h e  f i r s t  equa t ion  i n  Eq (241, which will 
y i e l d  

0 

1 [ 0 

where 

*** 
t 

1 3  a 

bi** = 

R U  

33 a 

* * ** 
a13 - a12 a23 

* sc ** 
bl - a12 b2 

Fl b *,* 

Inspec t ion  o f  Eq [ 3 9 ]  shows t h a t  we have formed a u n i t y  matrix 
p a r t i t f o n  where t h e  row-columns were reduced. The a::* and the  

L J  A* 
elements  con ta in  t h e  necessary Information to form the reduc- 

'2 3 

I381 

1401 

[ 4 1 1  

i n g  ttdnsformaLion. To show t h i s ,  s u b s t i t u t e  Eq [ 3 1 )  and [32] Into 
Eq [ 8 ]  t o  y i e l d  
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[TI = 12 -._..-. F 11 

- a  "13 11 - . ----- 
?2 - a21 

1 

The second and th i rd  rows of Eq f421 a r e  equal t o  the negative of 

elements a and a i n  Eq [39]. Thus, Gauss r e d u c t i o n  also 13 23 
*** ** 

yields t h e  r e d u c i n g  transformation. 

DESCRIPTION OF TECHNIQUE 

The s t i f f n e s s  matrix [A] is read from NUTA i n  FORMA sparse notation, 
converted t o  banded notation, and stored on NUTl. This banded nota- 
t ion  s tores  groups of columns of the upper half of s y m e t r i c  matrix 
[A] . The reducing procedure ie similar to  the decomposition proce- 
dure of subroutines YDCW and YDCM3A. The reduced s t i f f n e s s  matrix 
LR) is stored on NUTR i n  FORMA sparse notation. 

stored on NvllT i n  rORMA sparse notation. 

I f  i n p u t  argument 
UT" is equal to one, the reducing transformation is formed crnd 

(42 1 



Y STOD 

Subroutine YDTOS reads  a FORMA spa r se  matr ix  from the  per iphera l  
device on which t h e  matr ix  is w r i t t e n  and s t o r e s  i t  i n  a dimensional 
work space i n  core. The work space I s  zeroed before  the  nonzero 
terms of t h e  spa r se  matr ix  are i n s e r t e d  i n t o  t h e  work space. 

DESCRIPTION OF TECHNIQUE 

Dense matr ix  [ Z ]  is formed from t h e  nonzero terms of FOKMA sparse  
matrix [A]. After a l l  of [Z] is zeroed, each p a r t i t i o n  of [ A ]  is 
sequent ia l ly  read i n t o  work vec tors  {VI and {LV).  
zero elemsnt loca t ion ,  LV(k), i and j are found: 

For each non- 

i = LV(k)/100000 

j = LV(k)-100000 * i 
then 

z = V(k) f o r  a l l  elements of [A].  
i 1  



YSYMUH 

Subroutine YSYMUH symmetrizes a square FORMA sparse matrix [ A ] .  
Existing elements above the diagonal are set to zero and new tle- 
mnts are added above the diagonal to r e f l e c t  elements below the 
diagonal. The matrix is then searched and any zero elements are 
removed. Finally, the elements and the ir  locations are ordered. 
This result I s  [Z] where: 

and 

=ij = aji i < j .  



YTRANS 

Subroutine YTRANS calculates the transpose (interchange o f  rows 
and columns) of a matrix in FORMA sparse notation. If [AImxNCA 
l e  the matrix to be transposed, then the reeult i e  

m 

where 

NRA is the  number 0;' rows of [A], and NCA is the number of columns 
of [A] .  

DESCRIPTION OF TECHNIQUE 

The location of each a, (lOO000 * i + j) l e  transposed to 

100000 * j .C 1 and the matrix i e  reordered. 
A j  



Subroutine YUNITY generatee a square matrix [Z] with diagonal elements 
equal to  one and a l l  off-diagonal elements equal t o  zero. That i s ,  

ZtJ = 1. 

z , ,  - 0. (i + J )  
A J  

I n  matrix notat ion,  

W, = 1. 0 .  

. 
0 .  1. 

where N is the elre of [Z] (square). 
irr the Iden t i ty  matrix, thus the usual designation a s  LI] . A synonym f o r  thz uni ty  matrix 

A matrix is unaltered when m u l t i p l i e d  by the uni ty  matrix ant? the pro- 
cess  is comnutative. In  matrix notation, 

DESCRIPTION OF TECHNIQUE 

N ones a r e  s tored in workspace V and N diagonal element location numbers 
a r e  s tored i n  workspace LV. 
numbers is  s tored on NUTA. 

[Z] , composed of these ones and locat ion 



YWdITE 

Subrou t ine  YWRITE ::rites a FORMA upar se  n o t a t i o n  matrix of real 
numbers ( a  FORTRAN term f o r  numbers w i t h  a decimal p o i n t )  on paner. 
A group of  up t o  t e n  consecu t ive  elements  from a row of  t h e  matrix 
i s  p r i n t e d  on each l i n e .  
z e r o ,  p r i n t i n g  of t h i s  l i n e  is suppressed.  

If a l l  of t h e  e l e n e n t s  of a group a r e  

Each m a t r i x  p r i n t e d  kegi.ts on a new page. 
o u t  is t h e  page heading g iven  by Subrou t ine  ?AGEHD, t h e  name 
of t h e  matr ix ,  t h e  row s i z e  and column s i ze  of t h e  m a t r i x ,  t h e  
number on nonzero elements  i n  t h e  m t r l x ,  and t h e  number of parti-  
t i o n s  i n  t h e  ma t r ix .  

On each page of p r i n t -  

This is followed by t h e  m a t r i x  d a t a .  On any l i n e  of m a t r i x  d a t a  
the  f i rs t  i n t e g e r  number is t h e  row number of t h e  m a t r i x  e lements  
on t h a t  l i n e .  The second i n t e g e r  number is t h e  co1u:m number of 
t h e  matrix element i n  t h e  f i r s t  d a t a  f i e l d .  The next  group of 
real numbers (up t o  ten; dre t h e  va lues  of t h e  matri,. elements.  
T h i s  group of  matrix elerusnts is given i n  consecu t ive  column 
o rde r .  



Subrout ine YWTAPE writes FORHA s p a r s e  matrix d a t a  a t  t h e  end of 
e x i s t i u g  w r i t t e n  m a t r i x  d a t a  on a FORHA t a p e  ( d i s k  is p r e f e r r e d ,  
see below). Each set of matrix d a t a  c o n s i s t s  of tva l o g i c a l  
records.  The f i r s t  record  c o n t a i n s  t h e  matrix heading ( t a p e  
i d e n t i f i c a t i o n ,  l o c s t i o n  number, run number of rows of IEacrix, 
number of columns of matrix, d a t e ,  t h e  acronym "spart ,"  t h e  
number of nonzeroes i n  * *  ? p a r t i t i o n ,  t h e  number of the p a r t i t i o n ,  
and t h e  number of p a r t i t i o n s  i n  t h e  matrix. The second record 
Lmnslsts of t h e  matrix elements of t h e  p a r t i t i o n  and t h e  element 
loca t ions .  Subrout ine YWTAPE is c m p a t i b l e  with FORHA s u b r o u t i n e  
WAPE and dense and s p a r s e  matrices may b e  s t o r e d  on t h e  same 
FORMA r e s e r v e  tape.  

H1 

A schematic represo-ntation of t>e tar: (dLsk) i s  given by t h e  fol- 
lowing sketch. 

EOT "n En E2 ... H2 

Beg iMing 
Of 
t a p e  (diok) 

where 

Hi = Matrix h-.ading of t h e  ith w r i t t e n  m a t r i x  p a r t i t i o n ,  

Ei = Matrix elemenzs of t h e  ith w r i t t e n  mat r ix  p a r t i t i o n ,  

EO1 = End of Tape. Data w r i t t e n  by Sub*.outlne WTAPE. W A P E ,  o r  
INTAPE t h a t  a l l  F O W  t ape  s u b r o u t i n e s  recognize as being  
t h e  end of u r i t t e n  da ta .  

Each ver t icai  l i n e  LS 211 end of l o g i c a l  r c w d  puL on by computer 
sys t em ' s  r o u t f n ~ 3 .  The tape  is w r i t t e n  i n  b inary  form as r*pposed 
t o  binary coded decimal (BCD) form. 

To f l n d  t h e  end o f  w r i t t e n  matr ix  d a t a ,  a search  is  made of t h e  
matrix headings u n t i ?  t h e  EOT is found. For t h i s  reascn, a 
"new" tape  ( d i s k )  m u s t  be  i n i t i a l i z e d  w i t h  Subrout ine INTAPE so 
t h a t  t h e  t a p e  (d?sk)  conta ins  a. EOT. A "new" t a p e  ( d i s k )  i s  
def1i.z.i t o  be a t.ipe ( d i s k )  f o r  which it is d e s i r e d  t o  s tar t  
writ!.ng mat r ix  d a t a  a t  t h e  f r o n t  of t h e  t a p e  ( d i s k ) .  Thus, a 
"new" tape  ( d i s k )  could be on( J i t h  o b s o l e t e  FORMA matr ix  d a t a  
on i t  as w e l l  as one t h a t  h c -  -ii'o,r been w r i t t e n  on by L h s  
FORMA system. 'When t h e  EOT i d  found, a backspace o p e r a t i o n  is 
done oler th;, EOT, ark! then the  cur ren t  m ? r i x  heading, c u r r e n t  
m r t r i x  e l e d e n t r .  arid a neb- EOT is writtei,. 
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A d i s k  is prefer red  to a t ape  because t h e  phys ica l  separa t ion  of 
t h e  read and w r i t e  heads on most tape d r i v e s  may cause tape 
tolerance problems; thus back-spacing over t h e  EOT is usual ly  not 
succeeeful.  Instead of ending up posi t ioned i n  f r o n t  of t he  EOT, 
t h e  w r i t e  head is o f t e n  posi t ioned i n  f r o n t  of t he  previous matr ix  
elemants (E is t h e  stave sketch) .  The cu r ren t  matr ix  heading 

will be  w r i t t e n  over previous matrix ale!mmnta. 
problem later when t ry ing  t o  read th- records w r i t t e n  on t he  tape.  
To a l l e v i a t e  t h i s  problem, i t  is s t rong ly  recotmuended t h a t  a l l  
FORHA t ape  subrout ines  use an  in te rmedia te  device such as a disk.  
At the atart  of a computer run, t h e  e x i s t i n g  tape should b e  copied 
on the  d i s k  by using computer con t ro l  cards .  Likewise, a t  t h e  
end of t h e  run, t h e  d i s k  should b e  copied back cn t ape  by using 
computer con t ro l  cards.  

n 
Thie caueea 



Subroutine YZERLH eliminates the non-zero elements below the diagonal 
of a matrix [A) stored on NUTA In FORMA sparse notation. That is, 

ls!!uE& 
If [A] Is Input to Subroutine YZEBLtI as 

the matrix output frm this  subroutine wil l  be 

Piatrlx [A) I s  read into  workspaces V and LV. 
locations are searched for element location8 below the diagonal. 
locations and the corresponding elements are eliminated. 

The non-zero elemerit 
These 



Subroutine PZERUH eliminate8 the non-zero elements above the diagonal of 
a matrix [A] stored on NvllA i n  Forma sparse noti;tion. That i s ,  

- 
If [A]  fe input to Subrouctne YZERUH as 

5. 6 .  

7. 8. 9. 

the matrix output from this subroutine w i l l  be 

Matrix [A] is read into  vorkspacee V and LV. 
locations ore searched for element locations above the diagonal. 
locations and the corresponding elements are elrminated. 

The non-z-ro element 
There 



YZERO 

Subrout L I W  YZERO generates a matrix w i t h  C; I .~ I  t.1einrtit cqu.1 I t o  
zero. That is, 

2 = 0. ij 

In matrix notaLioii. 

. . . 0. 

. . 0 .  

where NR I.s t:ie ,lumber of rows of [Z], and NC is thc ilUt;lllcr of 
columns of [ Z l .  

This s u b r m t i n e  i s  u s e f u l  i n  s e t t i n g  a m a t r i x  array t o  zcro 
b e f o r e  perfonling subsequent.  operations Such as matrix assembly 
(ASSEM) or revision/addition of one matr ix  i .n tn  motlie-- (YREVAD). 

PIBtrixCZ] is  stored on NUTA i n  F O W  sparse notation. 
matrix elements equal to zero are not etored i n  t h i .  notation, only 
matrix headers are stored on NUTP.. 

Becauee 


